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M O D E L  O F  T H E  D E F O R M A T I O N  O F  A L I Q U I D  D R O P L E T  IN 

A GAS F L O W  
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1. INTRODUCTION 

The deformation and breakup of liquid droplets play a key role in many applied problems involving multiphase flows, 

for example, in engine combustion [1] and explosion safety [2]. This situation fosters a continued interest in the subject and 
the ongoing publication of new experimental [3-6] and theoretical [7-9] papers. Noteworthy among earlier experimental 

studies are [10-19], in which the basic laws of the phenomenon have been investigated. Detailed surveys of earlier research 

in the area can be found in [4, 20]. 

Two approaches have surfaced in theoretical papers: 1) the analysis of the complex stressed state of a droplet on the 

basis of multidimensional equations of motion [8, 9, 21]; 2) the construction of simplified phenomenological models [22-24]. 
The successes of the first approach stem primarily from the advancement of computer engineering, but there have also been 

auspicious attempts at the purely analytical approach [21]. Simplified models of the deformation and breakup of droplets are 

better justified in the investigation of complex, chemically reacting, multiphase flows [25, 26]. 
Certain obvious requirements must be met by any simplified model of droplet deformation, namely it should: 
- -  give acceptable results on the dynamics and characteristic time of deformation of the droplet to the critical stage, 

i.e., the time at which deformation becomes irreversible; 

- -  give correct values of the minimum (critical) Weber number necessary for the droplet to attain irreversible 

deformation; 
- -  correctly mirror the dependence of the characteristic deformation time and the critical Weber number on the 

governing parameters. 

A good criterion of the validity of a model is its conformity with experimental observations. 
The model of [22], which is used in [25, 26], does not meet the stated requirements. The model of [23], which is 

based on the equation for the deformation of a liquid ellipsoid in a gas flow, ignores the viscous properties of the liquid and 
the gas. A simplified droplet deformation model based on the "preferred direction of deformation" (PDD) approximation has 

been proposed by Davidson [24]. The PDD approximation is geared to the uniaxial stressed state of a particle of a viscous, 

incompressible liquid under the influence of forces created by aerodynamic pressure, surface tension, and gravity. The model 

is based on the Stokes friction law, which relates the linear strain rate of a particle to the normal stress. The results of 

calculations according to the model give a qualitative correct picture of the droplet deformation dynamics and the dependence 

of the critical Weber number on the governing parameters. Quantitatively, however, Davidson's model [24] yields greatly 
underestimated values of the characteristic deformation time and critical Weber numbers. 

A new droplet deformation model based on the PDD approximation is proposed below. The main departur e from 
Davidson's model [24] is an attempt to include internal viscous flows in the droplet as k undergoes deformation. The model 

is used to calculate the deformation dynamics and critical Weber numbers when the droplet is loaded in an airborne shock 
wave. 

2. STATEMENT OF THE PROBLEM 

Suppose that the initial droplet is in the shape of a sphere of radius R. The direction of motion of the droplet (x axis) 
coincides with the direction of the unrestricted gas flow. We introduce the following simplifying assumptions: 
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1) The deformation of the droplet is analyzed in the PDD approximation. 

2) The droplet is deformed quasistatically, i.e., the deformed state at each instant is determined from the condition of 

equilibrium of all active forces. 

3) The liquid is incompressible, the mass of the droplet is invariant during deformation, and the additional mass of 

the droplet is negligible. 
4) The deformed droplet is in the shape of an ellipsoid of revolution, prolate in the direction transverse to the flow, 

and the ellipsoid is formed by the rotation of an ellipse of semiminor axis a and semimajor axis b about the minor axis. 

5) The influence of the force of gravity is negligible. 
6) The deformation process become irreversible when a certain critical strain is attained, at which point a = a .  and 

b = b . .  

We place the origin at the center of symmetry of the droplet. In the PDD approximation we write the equation for 

the linear strain of the droplet along the x axis in the form 

21~la-l(da/dt) = --KAp,  (2.1) 

where t is the time, /x t is the dynamic viscosity of the liquid, Ap is the total deforming pressure, and K < 1 is a dimension- 
less coefficient, which takes into account the work done by aerodynamic and surface tension forces in imparting internal 

motions to the liquid. The coefficient K is what distinguishes Eq. (2.1) from the corresponding equation in [24]. 

The total deforming pressure is def'med as the difference between the total aerodynamic pressure Pd on the surface of 

the droplet and the normalized Laplacian pressure pa in the droplet interior, i.e., Ap = Pd -- P,~" The projection of the total 

aerodynamic pressure onto the x axis is defined as 

1 
P,t = -~ f (P - Po) ds.  (2.2) 

S 

Here p is the x-projection of the pressure-induced force on the surface of the droplet, and P0 is the static pressure of the gas; 
the integral is evaluated over the entire surface of the droplet S. Since the liquid is incompressible, the Laplacian pressure 

induces uniform compression of the droplet. In the PDD approximation, however, two surface tension components can be 
discerned. The first (poskive) component p~+ is induced by the curvature of the droplet in the plane parallel to the x axis and 

tends to flatten the droplet in the direction transverse to the flow. The second (negative) component p~_ is induced by the 
curvature of  the droplet in the plane perpendicular to the x axis and tends to restore the droplet to its original shape. In the 

given approximation the normalized Laplacian pressure has the form 

pr = p,_ - &,+. 

For an ellipsoid of  revolution we can write [24] 

2oa ~(a 2 + b ~) 
p,+ - b2 , p,_ - ba 2 (2.3) 

The coefficient K is evaluated on the basis of dimensional considerations. It follows from the assumption of quasi- 
static deformation that K is associated with viscous stresses produced in the steady-state motion of the liquid in the droplet. 

The functional relation of K to the parameters of the problem can therefore be expressed as 

K = f ( U  I, IZ,, R,  Ap.), 

where U t is a characteristic velocity of the liquid, and Ap,  is a characteristic value of the total deforming pressure. The four 

governing parameters (U l , /z  t, R, Ap,)  can be consolidated into a single, independent, dimensionless group UllZl/RAp..  We 

then have 

ut& 
K = a RAO--'-~ (2.4) 
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(c~ is a numerical coefficient). The velocity U l is of the same order of magnitude as the droplet deformation rate da/dt, i.e., 

Ut(da/dt)-1 - 1. This fact provides a means for estimating the order of magnitude of the coefficient cx on the basis of (2.1) 

and (2.4): o~ - 1 .  

To estimate U t, we invoke the equation of continuity for an incompressible liquid droplet: 

l o r , ,  ~ t o u ,  s i .O  i o v  
- - +  - -  - -  + - -  = 0 .  ( 2 . 5 )  

r 2 Or rs in0 oN9 rs in0 o~o 

Here U r, U o, and U, are the radial and two angular components of the fluid velocity in spherical coordinates. We use Eq. 

(2.5) for liquid particles on the upstream surface of the droplet and compare the orders of magnitude of the velocity compo- 

nents. A suitable scale of the angular components U o and U~ is the tangential velocity of the droplet surface U i , which is 

determined by solving the problem of conjugate boundary layers [27]: 

Vi = UQ.tp /kt tpj)  1/3 

(U is the relative velocity of  the center of mass of the droplet in the gas flow; quantities without subscripts refer to the 

parameters of the gas flow). 
The radial velocity component varies from - U t to - 0  over a distance of the order of R. The angular velocity 

components vary from - 0  (at the stagnation point) to U i over an angular distance of the order of 7r/2. It therefore follows 

from (2.5) that 

~ - u , .  

Replacing U l by U i in (2.3) and setting Ap, = pU2/2,  we obtain the final expression for the coefficient K 

In light of Eq. (2.6) we write Eq. (2.1) in the form 

subject to the initial condition a = R at t = 0. 
Equation (2.7) contains the relative center-of-mass velocity U of the droplet in the gas flow: 

(2.6) 

(2.7) 

u=u~-u~ 

(Ug and U d are the absolute velocities of the gas and the droplet). The equations of motion of the droplet have the form 

m - - ~  = n C  b 2 p , (2.8) 

where m is the mass of  the droplet, and C x is the aerodynamic drag coefficient. We assume that Ug is a known function of 

the time: Ug = ,r Inasmuch as dUd/dt = - d U / d t  + dr  and m = (4/3)Trab2pt, we obtain the following in place of 

(2.8): 

dV a c ~ (  t'v2] ~o' 
- + (~o' = d~o/dt) (2.9) 

subject to the initial condition U = 9(0) at t = 0. 
The drag coefficient of the droplet C x can be represented by a sum of two terms 1"28]: 

r  = C p + C ~ .  ( 2 . 1 0 )  
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Here Cxp is the pressure drag coefficient, and Cxi is the friction drag coefficient. For poorly streamlined bodies such as a 
deformed droplet at high Reynolds numbers Re = pUR/~  the approximation Cxi < <  Cxp is valid, and Eq. (2.10) reduces to 

the form C x = Cxp. In this case C x is related to the total aerodynamic pressure Pd by the equation 

Pd 
C. - pUal 2 -- p,~ (2.11) 

(Pal is the pressure coefficient). 
An analysis of  experimental data [16] on the drag coefficient of droplets undergoing deformation in compressible gas 

flows behind shock waves shows that C x = 1.8-3.0 for Re > 500 and does not depend on Re. In other experiments C x = 

2.3 for Re > 103 [3], C x = 3.0 for Re > 104 [15], and C x = 1.6-2.2 for Re > 103 [18], where it is noted that C x 

depends on how the droplet breaks up. In the present study C x is assumed to be constant and equal to 2.0, i.e., its average 

value is adopted. 
Consequently, Eqs. (2.7) and (2.9) in conjunction with the initial conditions, relations (2.3), (2.6), and (2.11), and 

given values of p, Pl, ~, ~l, R, and ~o(t) completely specify the problem of the deformation of a droplet in the PDD approxi- 

mation. 
To transform to dimensionless variables, we introduce the notation 

t = 7  , U =  v p - - R  , W e -  ~r , 

~j 

By virtue of assumptions 3 and 4 above, we can write ab 3 = R 3. Equations (2.7) and (2.9) then acquire the following form 

on the basis of  (2.3), (2.6), and (2.11): 

a~ " '  [ 2 (2a3 _ . :3 . ,  _ a-3,~)] 

(2.t2) 
dWe 3 WeS'Z (P/X~2La-I 2 

subject to the initial conditions a = 1 and We = We 0 at f = 0, where We 0 = p~o 2 (O)R/o. The maximum Weber number 
We0. ,  at which the critical deformation stage a .  = /~,2 is attained, is called the critical Weber number. We use the follow- 

ing procedure to determine a . .  According to abundant experimental observations of the breakup of droplets in a shock wave, 

We,  = 5 for large-diameter (1-4 mm) droplets of low-viscosity liquids (water, alcohol, and kerosene). The Laplace number 
La = 103-105 for droplets of this kind. Since pt lp  = 102-I03 , it follows from (2.12) that d W e l d [  < <  1 during deforma- 

tion, i.e., We --- We 0 = const. The reversible deformation of a droplet is characterized by a stage with d a / d f  = 0, i.e., 
according to (2.12), 

C~We~ - a-3/2 + aS'Z - 2a3" (2.13) 
2 
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TABLE 1 

'. ~.~_.k 

0 
3,61 
7,23 
9,17 
11,12 
13,90 
15,29 
16,12 
18,07 
23.07 

[41 

1 
1,33 
1,5 
1,6 

1,67 
1,76 
1,67 
1,6 

1,33 
1,26 

1 
1,7 

1,64 
1,59 
1 ,.54 
1,48 
1,46 
1,44 
1,41 
1.35 

t, msec 

0 
0,2 
0,4 

0,65 
0,7 
0,8 
0,9 

[61 

1 
1,06 
1,26 
1,33 
1,03 
0,82 
0,91 

1 " 

1,403 
1,307 
1,228 
1,216 
1,195 
1,177 

1,,~ x 3 
o 4  
-"5 

o So 7~o ,e~O ' ' ~:,/.~SeC 

Fig. 3 

The critical stage for droplets of low-viscosity liquids sets in when We o = Weo, = We ,  = 5 and, accordingly, 

when d ,  --- 0.35 and b ,  --- 1.7. We call attention to the difference in the definitions of the critical Weber numbers We0, and 

We,:  Weo, is determined from the initial relative velocity of the gas and the droplet, whereas We ,  is determined from the 

instantaneous relative velocity of the gas and the droplet when the droplet attains the critical deformation stage. 

Photographic studies [4] have shown that the maximum deformation of a water droplet (R = 1300 izm) before the 

start of  breakup for We o = 6.2 is 6 = 1.5-1.62. In experiments [18] with water droplets (R = 250/~m) the maximum 

transverse deformation prior to breakup of a droplet for We o = 6 was found to be 6 = 2. The value obtained from (2.13) 

agrees satisfactorily with these observations. We shall assume below that irreversible deformation of a droplet begins at the 

indicated values of a ,  and b ,  regardless of the properties of the liquid and the impingent gas flow. 

We solve the system of equations (2.12) numerically by a fourth-order Runge-Kutta  procedure with a variable time 
step. 

3. RESULTS OF T HE  CALCULATIONS 

Since the overwhelming majority of  experimental studies of droplet deformation have been conducted with shock 

waves, we consider the case of sudden loading of a liquid droplet in the flow behind a shock wave with constant parameters. 

Let M be the Mach number of the shock wave. We calculate the parameters of the gas in Eq. (2.12) according to the 

equations 

2% (M - --~), ~,' = O, 
u = ~(o) - ( r -  1) 

O' + I) M2 
P = Po (7 - I)M 2 + 2' u = 10,7 �9 lO-6(mT)l/2d~2, 

2 ( y -  l)  
T = T o i l  + 0'  + 1) 2M~ (M2 - 1)(1 + y M 2 ) ] ,  

(3.1) 
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T A B L E 2  

Curve No. in 
Fig. 3 

6 
7 
8 
9 
10 

M We 0 t d ,  msec r. msec r/r 

1,3 
1,5 
2,0 
3,0 

3,5 

6,7-10 3 

2,0.10 3 
9,1.10 3 

4,1 . lO 4 

6.5.10 4 

430 
247 
115 
54 
42 

187 
109 
52 
24 
19 

0,43 
0,44 
0,45 
0,45 
0,44 

T A B L E 3  

&/xm We 0 

100 5,3 
150 8,0 
200 I 1,0 
250 13.0 

0,12 
0,12 
0,12 
0.12 

F 
"r 

0,34 [ 0,57 
0,31 [ 0,47 0,62 
0,30 0,43 0,54 
0.29 0.41 0,51 

where c is the sound velocity, 3' is the specific heat ratio, m is the molecular mass, T is the temperature, and d m is the 
molecular diameter in angstroms in the model of rigid spheres (see [29]); the subscript 0 refers to the freestream gas parame- 

ters. Thus, the set of independent governing parameters for the given droplet loading regime has the form 

/90 #o La, y, M, We o. 
Pt' /at' 

The following characteristic time is introduced in many studies of droplet breakup processes: 

2R ~t / -~ t .  
V 7. 

The dimensionless time ? = t / t  d will be used below to compare the calculated parameters with the experimental data. 

Figure 1 shows calculated curves of b(t) for the deformation of a water droplet (R = 1000 tzm) in airborne shock waves of 

various intensities. Curve 1 (M = 1.02) corresponds to "subcritical" loading of the droplet, since the maximum deformation 

bma x < b , .  After a time ? --- 15-20 from the start of loading, the droplet acquires its original spherical shape. Curve 2 (M 

= 1.033) corresponds to critical deformation bma x = b , ,  We 0 = We0, = 5, when the deformation of the droplet is still 
reversible. Curves 3 (M = 1.07) and 4 (M = 1.8) correspond to supercritical loading We0,  > We o. The dashed curve 

corresponds to the critical deformation stage b ,  = 1.7. The region of validity of the proposed model is bounded by the 

inequalities a < a ,  and b < b , .  
The calculated [b(t)] and measured [b e (t)] [4, 6] dynamics of the deformation of liquid droplets in subcritical loading 

are compared in Table 1. 

Wind tunnel experiments with water droplets (R = 1300 #m) at We 0 = 6.25 are reported in [4], and air shock 

experiments at M = 1.1 with water droplets (R = 110 #m, We o = 3.55) are reported in [6]. 
In Fig. 2 the calculated function b(t)  (solid curve) is compared with experimental data [5] (points) on the deformation 

of an ethyl alcohol droplet (R = 750 /~m) in an air shock with M = 1.56 (We o = 5.6.103). This case corresponds to 

"supercritical" loading of the droplet. According to [5], the abrasion of the droplet by the gas flow begins to accelerate 
appreciably at ? -~ 0.5, i.e., the droplet begins to lose mass. 

Previously [13] it has been found that the time ~ = 0.5 for a low-viscosity liquid (water) at We o > 5.102 corre- 

sponds to the onset of shattering of the droplet (R = 400-1700 t~m). At ~" -- 0.5-0.6 the calculated curve in Fig. 2 begins to 

deviate markedly from the experimental curve (dashed curve), because the mass of the droplet is assumed to be constant in 

the given model. It is interesting to note that the critical deformation stage of the droplet b = b ,  is attained at ? -- 0.5. 

The calculated b(t) curve is compared with the experimental data of [15] in Fig. 3. In [15] the deformation of a water 
droplet (R = 1350 ~m) behind air shocks was determined by shadowgraphy at various Math  numbers: M = 1.3 (points 1/ 

curve 6); 1.5 (2/7); 2.0 (3/8); 3.0 (4/9); 3.5 (5/10). 
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Fig. 4 

In all the indicated experiments the loading of the droplet was "supercritical," and the droplets broke up as their 

surface layer was stripped away by abrasion. Table 2 gives the calculated values of the characteristic time ta(M) and the time 
r at which an appreciable discrepancy begins to be observed between the calculated and experimental results. In Fig. 3 the 

ratio r/t d = 0.5, and it does not depend on M. For the indicated values of We 0 (see Table 1) t = 0.5 corresponds to the 
onset of abrasion of the droplet surface [13]; this event could account for the discrepancy of the results. As in Fig. 2, we 

have 6 = b ,  at ~ - 0.5 for the experimental conditions in [15]. 
It has been observed experimentally [6] that the dimensionless time of deformation of a droplet in an air shock up to 

a fixed stage (& 6 = idem) is essentially independent of We 0 (in the range 20 < We 0 < 100 for droplets of  silicone oil, R 

= 100-250/~m). The calculated values of this time for fixed values of 5 and various values of R (We o) are given in Table 3 

for the experimental conditions of [6] (M = 1.1). We see that the proposed model agrees satisfactorily with the observations 

in [6]. 
The most interesting results pertain to the critical droplet loading regime. Experimental curves of  the critical velocity 

of a steady gas flow Uo, as a function of the droplet diameter D = 2R are often published in the literature. In Fig. 4, 

accordingly, the calculated (curves 6-10) and measured values of the critical velocity of an air flow U0, are compared for 
droplets of various liquids: water (point 1/curve 6), methyl alcohol (2/7), and oils of various viscosities: 10 St (3/8), 50 St 

(4/9), and 100 St (5/10). 
We note that the experimental data in Fig. 4 have been obtained by different experimental procedures. The breakup 

of droplets was observed in a free air jet (o = o0) in [10], in a vertical wind tunnel in [11], and in a shock tube in [14, 4, 6]. 
It has been noted in certain experiments [4, 10] that a gas velocity transition zone exists, where the droplet is 

subjected to critical loading. In this regard Fig. 4 shows the lower and upper limits of Uo, in the zone. In [10] the lower 
limit corresponds to simple splitting of the droplet, and the upper value to shattering of the droplet. 

It is evident from the comparison of the calculated and experimental data that the proposed model gives satisfactory 
predictions. It is particularly significant that the model traces the influence of viscosity and surface tension of the liquid. 

It follows from Eq. (2.12) that the integral curve in the (We, a) plane is described by the equation 

subject to the initial condition We = We o at a = 1. 

Consequently, 

[ ,p, 2/, ~,3]) 
' 
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i.e., for a given a ,  the critical Weber number depends on a single dimensionless parameter H = (p/pl)213(iZl/iZ)I/3. Taking 

Eq. (3.1) into account, we find that for shock-loaded liquid droplets 

" "  M FIP"~'~(~"~" 1 Weo. = ' ( r ,  ,L(~) [~0) )" 

It is interesting to note that the Laplace number is not included in the set of governing parameters for Weo.. 

Figure 5 shows the calculated We0,(II) curve. The calculations were carried out for real liquids (mercury, water, 
alcohol, kerosene, oils, glycerin-water mixtures, pure glycerin, etc.) for 1 < M < 1.2. In the range 0 < II < 0.5 the 

calculated Weo, (H) curve is approximated by the relation 

We.(H) = 5 + 2511 + 4W-. 

Experimental data [4, 6, 10-12, 14, 17] are shown for comparison. Isshiki's results for glycerin droplets are cited 

from [4]. The scatter of the data from [17] is attributable to the fact that ranges of variation of R and M and calculated values 

of La are given in [17] rather than data for specific experiments. The scatter of the results from [4, 10] is associated with the 
fact that lower and upper bounds of droplet stability are distinguished in the results. The data of [14] stand out among the 

experimental points in that they exhibit a fairly strong dependence of We0. on the size of the droplets. We have been unable 

to find experimental data in the ranges 0.2 < H < 0.4 and II > 0.45. 

We have thus presented a simple model of the deformation of a liquid droplet in a gas flow. The model is constructed 

in the preferred direction of deformation approximation and is based on two equations: the droplet deformation equation and 
its equation of motion. An important parameter governing the droplet deformation rate is the coefficient K, which takes into 

account the dissipation of energy in the excitation of internal flows of liquid in the droplet. Since/.t, l ) >  //. and Pl >> P, the 

coefficient K is much smaller than unity. All other conditions being equal, the dissipation of energy in the droplet increases 

with the viscosity of the liquid. 
It follows from a comparison of the results of the calculations with experimental data that the model gives satisfactory 

results for the critical Weber number and the characteristic deformation time of a droplet in the range 0 < II < 0.5. 

REFERENCES 

1 .  

2. 

3. 

A. H. LeFebvre, Gas Turbine Combustion, Hemisphere Publ. Co., Washington, D.C. (1983). 
W. E. Baker, P. A. Cox, P. S. Westine, et al., Explosion Hazards and Evaluation, Elsevier, Amsterdam (1983). 

V. M. Boiko, A. N. Papyrin, and S. V. Poplavskii, "Dynamics of the breakup of droplets behind shock waves," 
Prikl. Mekh. Tekh. Fiz., No. 2 (1987). 

918 



4. A. Wierzba, "Deformation and breakup of liquid drops in a gas stream at nearly critical Weber numbers," Exp. 
Fluids, 9, 59-64 (1990). 

5. T. Yoshida and K. Takayama, "Interaction of liquid droplets with planar shock waves," Trans. ASME J. Fluids 

Eng., 112, 423-428 (1990). 
6. H. Hirahara and M. Kawahashi, "Experimental investigation of viscous effects upon a breakup of droplets in high- 

speed air flow," Exp. Fluids, 13, 231-234 (1992). 

7. V .P .  Sosnin, I. A. Kopyrin, and S. G. Filimonov, "Mechanism of the deformation and breakup of a mixed drop- 

let," Poroshk. Metall., No. 7, 1-5 (1987). 
8. Zheng-Tao Deng and San-Mou Jeng, "Numerical simulation of droplet deformation in convective flows," AIAA 

Paper No. 90-2369, AIAA, New York (1990). 
9. V .S .  Surov and V. M. Fomin, "Numerical simulation of the interaction of a water droplet with a strong airborne 

shock wave," Prikl. Mekh. Tekh. Fiz., No. 1, 48-54 (1993). 
10. M.S.  Volynskii, "Breakup of droplets in an air flow," Dokl. Akad. Nauk, 62, 301-304 (1948);, 68, 237-240 (1949). 
1 I. W.R.  Lane, "Shatter of drops in streams of air," Ind. Eng. Chem., 43, No. 6, 1312-1317 (1950). 

12. J .O.  Hinze, "Fundamentals of hydrodynamic mechanism of splitting in dispersion process," AIChE J., No. 1,289- 

295 (1955). 
13. A.A.  Buzukov, "Breakup of droplets and jets of liquid by an airborne shock wave," PriN. Mekh. Tekh. Fiz., No. 

2, 154-158 (1963). 
14. A .R.  Hanson, E. G. Domich, and H. S. Adams, "Shock tube investigation of the breakup of drops by air blasts," 

Phys. Fluids, 6, No. 6, 1070-1080 (1963). 
15. A.A.  Ranger and J. A. Nicholls, "Aerodynamic shattering of droplets," AIAA J., 7, No. 2, 285-295 (1969). 
16. P.G.  Simpkins and E. L. Bales, "Water-drop response to sudden accelerations," J. Fluid Mech., 55, No. 3, 629-639 

(1972). 
17. B.E.  Gel'fand, S. A. Gubin, and S. M. Kogarko, "Characteristics of the breakup of viscous liquid droplets," Inzh.- 

Fiz. Zh., 25, No. 3,467-470 (1973). 
18. B . E .  Get'fand, S. A. Gubin, and S. M. Kogarko, "Modifications of the breakup of droplets in shock waves and 

their characteristics," Inzh.-Fiz. Zh., 27, No. 1, 119-126 (1974). 
19. S .A.  Krezeczkowski, "Measurement of liquid droplet disintegration mechanism," Int. J. Multiphase Flow, 6, 227- 

239 (1980). 
20. A.I .  Ivandaev, A. G. Kutushev, and R. I. Nigmatulin, "Gas dynamics of multiphase media: shock and detonation 

waves in aerocolloids," in: Itogi Nauki Tekh. VINITI Ser. Mekh. Zhidk. Gaza, 16-(1981). 
21. A . L .  Gonor and N. V. Zolotova, "Slowing and deformation of a liquid droplet in a gas flow," Izv. Akad. Nauk 

SSSR, Mekh. Zhidk. Gaza, No. 2, 59-69 (1981). 
22. G .D.  Gordon, "Mechanism and speed of breakup of drops," J. Appl. Phys., 30, 11-20 (1959). 

23. M.S.  Volynskii and A. S. Lipatov, "Deformation and breakup of droplets in a gas flow," Inzh.-Fiz. Zh., 18, No. 

5, 838-843 (1970). 
24. V . E .  Davidson, "Deformation of droplets in a gas flow," in: Jet and Pipe Flows [in Russian], Dnepropetrovsk 

(1974), pp. 3-35. 
25. A .A.  Borisov, V. E. Gelfand, S. A. Gubin, et al., "The reaction zone of two-phase detonation," Astronaut. Acta, 

45, 411-417 (1970). 
26. S . A .  Zhdan, "Simulation of heterogeneous detonation with allowance for deformation and breakup of the fuel 

droplets," Fiz. Goreniya Vzryva, 13, No. 2, 258-262 (1977). 
27. G.A.  Saltanov, Supersonic Two-Phase Flows [in Russian], Vysshaya Shkola, Minsk (1972). 
28. M.E.  Deich, Engineering Gas Dynamics [in Russian], Gos6nergoizdat, Moscow (1961). 
29. R .C.  Reid, J. M. Prousnitz, and T. K. Sherwood, The Properties of Gases and Liquids, McGraw-Hill, New York 

(1980). 

919 


